Power Generation Analysis of Terrestrial Ultraviolet-Assisted Solid Oxide Electrolyzer Cell

Author:

Butt Muhammad SalimORCID,Shahid Hifsa,Butt Farhan Ahmed,Farhat Iqra,Sadaf Munazza,Raashid MuhammadORCID,Taha AhmadORCID

Abstract

This paper presents a novel system design that considerably improves the entrapment of terrestrial ultraviolet (UV) irradiance in a customized honeycomb structure to produce hydrogen at a standard rate of 7.57 slpm for places with a UV index > 11. Thermolysis of high salinity water is done by employing a solid oxide electrolyzer cell (SOEC), which comprises three customized, novel active optical subsystems to filter, track, and concentrate terrestrial UV solar irradiance by Fresnel lenses. The output of systems is fed to a desalinator, a photovoltaic system to produce electrical energy, and a steam generator with modified surface morphology to generate the required superheated steam for the SOEC. A simulation in COMSOL Multiphysics ver. 5.6 has shown that a customized honeycomb structure, when incorporated on the copper–nickel surface of a steam generator, improves its absorptance coefficient up to 93.43% (48.98%—flat case). This results in generating the required superheated steam of 650 °C with a designed active optical system comprising nine Fresnel lenses (7 m2) that offer the concentration of 36 suns on the honeycomb structure of the steam generator as input. The required 1.27 kW of electrical power is obtained by concentrating the photovoltaic system using In0.33Ga0.67N/Si/InN solar cells. This production of hydrogen is sustainable and cost effective, as the estimated cost over 5 years by the proposed system is 0.51 USD/kg, compared to the commercially available system, which costs 3.18 USD/kg.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3