A Redesign Methodology to Improve the Performance of a Thermal Energy Storage with Phase Change Materials: A Numerical Approach

Author:

Harris Bernal Itamar A.ORCID,James Rivas Arthur M.ORCID,Ortega Del Rosario María De Los A.ORCID,Saghir M. ZiadORCID

Abstract

In recent years, phase change materials (PCMs) have been presented as a suitable alternative for thermal energy storage (TES) systems for solar water heater (SWH) applications. However, PCMs’ low thermal conductivity and the high dependence on external conditions are the main challenges during the design of TES systems with PCMs. Design actions to improve the performance of the TES systems are crucial to achieve the necessary stored/released thermal energy and guarantee the all-day operation of SWHs under specific system requirements. In this study, a TES with PCM in the configuration of a heat exchanger was redesigned, focused on achieving two main targets: an outlet water temperature over 43 °C during discharging time (15 h) and efficiency over 60% to supply the hot water demand of two families (400 L). A four-step redesign methodology was proposed and implemented through numerical simulations to address this aim. It was concluded that the type, encapsulation shape, and amount of PCM slightly impacted the system’s performance; however, selecting a suitable sensible heat storage material had the highest impact on meeting the system’s targets. The redesigned TES reached 15 operating hours with a minimum outlet water temperature of 45.30 °C and efficiency of 76.08%.

Funder

Sistema Nacional de Investigación de Panamá

Secretaría Nacional de Ciencia, Tecnología e Innovación

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3