Abstract
Renewable energy is crucial for achieving net zero emissions. Taiwan has abundant wind resources and most major wind farms are offshore over the Taiwan Strait due to a lack of space on land. A thorough study that includes time series modeling of wind speed and sea breeze identification and evaluation for Taiwan’s offshore wind farms was conducted. The time series modeling identified two periodic (annual and diurnal) components and an autoregressive model for multiple-year wind speed time series. A new method for sea breeze type identification and magnitude evaluation is proposed. The method (named as EACH) utilizes a vector and an ellipse to represent the wind condition of a day. Verification of the type identification determined by the new method in two cases of different seasons has been conducted by using surface weather charts and wind data measured by lidar. It is a concise, effective, and programmable way to filter a number of dates for type identification and speed change precursor of sea breeze. We found that the typical daily wind power production of corkscrew sea breeze in Central Taiwan is more than 33 times that of pure sea breeze and more than 9 times that of backdoor sea breeze, which highlights the impact of sea breeze types on wind power.
Funder
Ministry of Science and Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献