Can Agents Model Hydrocarbon Migration for Petroleum System Analysis? A Fast Screening Tool to De-Risk Hydrocarbon Prospects

Author:

Steffens Bastian,Corlay Quentin,Suurmeyer Nathan,Noglows Jessica,Arnold Dan,Demyanov Vasily

Abstract

Understanding subsurface hydrocarbon migration is a crucial task for petroleum geoscientists. Hydrocarbons are released from deeply buried and heated source rocks, such as shales with a high organic content. They then migrate upwards through the overlying lithologies. Some hydrocarbon becomes trapped in suitable geological structures that, over a geological timescale, produce viable hydrocarbon reservoirs. This work investigates how intelligent agent models can mimic these complex natural subsurface processes and account for geological uncertainty. Physics-based approaches are commonly used in petroleum system modelling and flow simulation software to identify migration pathways from source rocks to traps. However, the problem with these simulations is that they are computationally demanding, making them infeasible for extensive uncertainty quantification. In this work, we present a novel dynamic screening tool for secondary hydrocarbon migration that relies on agent-based modelling. It is fast and is therefore suitable for uncertainty quantification, before using petroleum system modelling software for a more accurate evaluation of migration scenarios. We first illustrate how interacting but independent agents can mimic the movement of hydrocarbon molecules using a few simple rules by focusing on the main drivers of migration: buoyancy and capillary forces. Then, using a synthetic case study, we validate the usefulness of the agent modelling approach to quantify the impact of geological parameter uncertainty (e.g., fault transmissibility, source rock location, expulsion rate) on potential hydrocarbon accumulations and migrations pathways, an essential task to enable quick de-risking of a likely prospect.

Funder

NERC National Productivity Investment Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference72 articles.

1. Petroleum generation and accumulation in the Golfo San Jorge Basin, Argentina: a basin modeling study

2. Basin and petroleum system modeling;Al-Hajeri;Oilfield Rev.,2009

3. The petroleum system: From source to trap;Magoon;AAPG Mem.,1994

4. Basin and Petroleum Systems Modeling at the Jeanne d’Arc and Carson Basin offshore Newfoundland, Canada;Baur;Recorder,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3