Spatiotemporal Comparison and Validation of Three Global-Scale Fractional Vegetation Cover Products

Author:

Liu Duanyang,Jia KunORCID,Wei XiangqinORCID,Xia Mu,Zhang Xiwang,Yao Yunjun,Zhang Xiaotong,Wang Bing

Abstract

Fractional vegetation cover (FVC) is an important parameter for many environmental and ecological models. Large-scale and long-term FVC products are critical for various applications. Currently, several global-scale FVC products have been generated with remote sensing data, such as VGT bioGEOphysical product Version 2 (GEOV2), PROBA-V bioGEOphysical product Version 3 (GEOV3) and Global LAnd Surface Satellite (GLASS) FVC products. However, studies comparing and validating these global-scale FVC products are rare. Therefore, in this study, the performances of three global-scale time series FVC products, including the GEOV2, GEOV3, and GLASS FVC products, are investigated to assess their spatial and temporal consistencies. Furthermore, reference FVC data generated from high-spatial-resolution data are used to directly evaluate the accuracy of these FVC products. The results show that these three FVC products achieve general agreements in terms of spatiotemporal consistencies over most regions. In addition, the GLASS and GEOV2 FVC products have reliable spatial and temporal completeness, whereas the GEOV3 FVC product contains much missing data over high-latitude regions, especially during wintertime. Furthermore, the GEOV3 FVC product presents higher FVC values than GEOV2 and GLASS FVC products over the equator. The main differences between the GEOV2 and GLASS FVC products occur over deciduous forests, for which the GLASS product presents slightly higher FVC values than the GEOV2 product during wintertime. Finally, temporal profiles of the GEOV2 and GLASS FVC products show better consistency than the GEOV3 FVC product, and the GLASS FVC product presents more reliable accuracy (R2 = 0.7878, RMSE = 0.1212) compared with the GEOV2 (R2 = 0.5798, RMSE = 0.1921) and GEOV3 (R2 = 0.7744, RMSE = 0.2224) FVC products over these reference FVC data.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3