Abstract
Rainfall estimates based on satellite data are subject to errors in the position of the rainfall events in addition to errors in their intensity. This is especially true for localized rainfall events such as the convective rainstorms that occur during the monsoon season in sub-Saharan Africa. Many satellite-based estimates use gauge information for bias correction. However, bias adjustment methods do not correct the position errors explicitly. We propose to gauge-adjust satellite-based estimates with respect to the position using a morphing method. Image morphing transforms an image, in our case a rainfall field, into another one, by applying a spatial transformation. A benefit of this approach is that it can take both the position and the intensity of a rain event into account. Its potential is investigated with two case studies. In the first case, the rain events are synthetic, represented by elliptic shapes, while the second case uses real data from a rainfall event occurring during the monsoon season in southern Ghana. In the second case, the satellite-based estimate IMERG-Late (Integrated Multi-Satellite Retrievals for GPM ) is adjusted to gauge data from the Trans-African Hydro-Meteorological Observatory (TAHMO) network. The results show that the position errors can be corrected, while preserving the higher spatial variability of the satellite-based estimate.
Funder
Technische Universiteit Delft
Horizon 2020
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献