Integrating Water Observation from Space Product and Time-Series Flow Data for Modeling Spatio-Temporal Flood Inundation Dynamics

Author:

Huang ChangORCID,Chen Yun,Zhang Shiqiang,Li LinyiORCID,Shui Junfeng,Liu Qihang

Abstract

Periodic inundation of floodplains and wetlands is critical for the well being of ecosystems. This study proposes a simple but efficient model that integrates time series daily flow data and the Landsat-derived Water Observation from Space (WOfS) product to model the spatio-temporal flood inundation dynamics of the Murray-Darling Basin. A zone-gauge framework is adopted in order to reduce the hydrologic complexity of the large river basin. Under this framework, flood frequency analysis was conducted at each gauge station to identify historical peak flows and their annual exceedance probabilities. The results were then linked with the WOfS dataset through date to model the inundation probability in each zone. Inundation frequency was derived by simply overlaying the yearly inundation extent from 1988 to 2015 and counting the inundation times. Both the resultant inundation frequency map and inundation probability map are of ecological significance for the survival and prosperity of riparian ecosystems. The assumptions of the model were validated carefully to enhance its theoretical basis. The WOfS dataset was also compared with another independent water observation dataset to cross-validate its reliability. It is hoped that with the development of more and more global high-resolution surface water datasets, this study could inspire more studies that integrate surface water datasets with hydrological observations for flood inundation modeling.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3