Abstract
The use of electronically steered antennas in the azimuth dimension typically leads to a staircase-like antenna beam steering law in the Terrain Observation by Progressive Scan (TOPS) wide-swath synthetic aperture radar (SAR) data acquisition mode, which will introduce paired echoes in the focused images. This paper proposes a new approach for removing such paired echoes from TOPS SAR images based on the generalization of the ideal optimum filtering concept, which can be implemented easily in the SAR data processing. Modeling the amplitude-modulated azimuth signal shows that the absolute phase of the introduced paired echoes cannot be determined due to the random rotation angle jump time for each target, which will prevent the precise use of optimum filtering. An extended optimum filtering approach, which is originally proposed for suppressing the azimuth ambiguities in SAR images, is reintroduced in this particular case, and a new approximated and generalized form of the deconvolving filtering in the approach is redefined to accommodate the undetermined phase for both the strongest paired distortion peaks and the other peripheral peaks in the distorted impulse response function (IRF). Simulated data from a TOPS SAR mode with staircase-like beam steering are used to verify the improvement in image quality by using the new method.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences