Improving the Accuracy of Fine-Grained Population Mapping Using Population-Sensitive POIs

Author:

Zhao ,Li ,Zhang ,Du

Abstract

Many methods have been used to generate gridded population maps by downscaling demographic data. As one of these methods, the accuracy of the dasymetric model depends heavily on the covariates. Point-of-interest (POI) data, as important covariates, have been widely used for population estimation. However, POIs are often used indiscriminately in existing studies. A few studies further used selected categories of POIs identified based only on the nonspatial quantitative relationship between the POIs and population. In this paper, the spatial association between the POIs and population distribution was considered to identify the POIs with a strong spatial correlation with the population distribution, i.e., population-sensitive POIs. The ability of population-sensitive POIs to improve the fine-grained population mapping accuracy was explored by comparing the results of random forest dasymetric models driven by population-sensitive POIs, all POIs, and no POIs, along with the same sets of multisource remote sensing and social sensing data. The results showed that the model driven by population-sensitive POI had the highest accuracy. Population-sensitive POIs were also more effective in improving the population mapping accuracy than were POIs selected based only on their quantitative relationship with the population. The model built using population-sensitive POIs also performed better than the two popular gridded population datasets WorldPop and LandScan. The model we proposed in this study can be used to generate accurate spatial population distribution information and contributes to achieving more reliable analyses of population-related social problems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3