Abstract
Comparative evaluation of cross-boundary wetland protected areas is essential to underpin knowledge-based bilateral conservation policies and funding decisions by governments and managers. In this paper, wetland change monitoring for the Wusuli River Basin in the cross-boundary zone of China and Russia from 1990 to 2015 was quantitatively analyzed using Landsat images. The spatial-temporal distribution of wetlands was identified using a rule-based object-oriented classification method. Wetland dynamics were determined by combining annual land change area (ALCA), annual land change rate (ALCR), landscape metrics and spatial analysis in a geographic information system (GIS). A Mann–Kendall test was used to evaluate changing climate trends. Results showed that natural wetlands in the Wusuli River Basin have declined by 5625.76 km2 in the past 25 years, especially swamp/marsh, which decreased by 26.88%. Specifically, natural wetlands declined by 49.93% in the Chinese section but increased with an ALCA of 16.62 km2/y in the Russian section during 1990–2015. Agricultural encroachment was the most important reason for the loss and degradation of natural wetlands in the Wusuli River Basin, especially in China. Different population change trends and conservation policies in China and Russia affected natural wetland dynamics. The research offers an efficient and effective method to evaluate cross-boundary wetland change. This study provides important scientific information necessary for developing future ecological conservation and management of cross-boundary wetlands.
Funder
National Key Research and Development Project
National Natural Science Foundation of China
Youth Innovation Promotion Association of Chinese Academy of Sciences
Subject
General Earth and Planetary Sciences
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献