Semi-Coupled Convolutional Sparse Learning for Image Super-Resolution

Author:

Li ,Zhang ,Jiao ,Liu ,Yang ,Tang

Abstract

In the convolutional sparse coding-based image super-resolution problem, the coefficients of low- and high-resolution images in the same position are assumed to be equivalent, which enforces an identical structure of low- and high-resolution images. However, in fact the structure of high-resolution images is much more complicated than that of low-resolution images. In order to reduce the coupling between low- and high-resolution representations, a semi-coupled convolutional sparse learning method (SCCSL) is proposed for image super-resolution. The proposed method uses nonlinear convolution operations as the mapping function between low- and high-resolution features, and conventional linear mapping can be seen as a special case of the proposed method. Secondly, the neighborhoods within the filter size are used to calculate the current pixel, improving the flexibility of our proposed model. In addition, the filter size is adjustable. In order to illustrate the effectiveness of SCCSL method, we compare it with four state-of-the-art methods of 15 commonly used images. Experimental results show that this work provides a more flexible and efficient approach for image super-resolution problem.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3