Hyperspectral Anomaly Detection Based on Separability-Aware Sample Cascade

Author:

Ma Dandan,Yuan Yuan,Wang QiORCID

Abstract

A hyperspectral image usually covers a large scale of ground scene, which contains various materials with different spectral properties. When directly exploring the background information using all the image pixels, complex spectral interactions and inter-/intra-difference of different samples will significantly reduce the accuracy of background evaluation and further affect the detection performance. To address this problem, this paper proposes a novel hyperspectral anomaly detection method based on separability-aware sample cascade model. Through identifying separability of hyperspectral pixels, background samples are sifted out layer-by-layer according to their separable degrees from anomalies, which can ensure the accuracy and distinctiveness of background representation. First, as spatial structure is beneficial for recognizing target, a new spectral–spatial feature extraction technique is used in this work based on the PCA technique and edge-preserving filtering. Second, depending on different separability computed by sparse representation, samples are separated into different sets which can effectively and completely reflect various characteristics of background across all the cascade layers. Meanwhile, some potential abnormal targets are removed at each selection step to avoid their effects on subsequent layers. Finally, comprehensively taking different good properties of all the separability-aware layers into consideration, a simple multilayer anomaly detection strategy is adopted to obtain the final detection map. Extensive experimental results on five real-world hyperspectral images demonstrate our method’s superior performance. Compared with seven representative anomaly detection methods, our method improves the average detection accuracy with great advantages.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3