Sea Ice Remote Sensing Using GNSS-R: A Review

Author:

Yan QingyunORCID,Huang WeiminORCID

Abstract

Knowledge of sea ice is critical for offshore oil and gas exploration, global shipping industries, and climate change studies. During recent decades, Global Navigation Satellite System-Reflectometry (GNSS-R) has evolved as an efficient tool for sea ice remote sensing. In particular, thanks to the availability of the TechDemoSat-1 (TDS-1) data over high-latitude regions, remote sensing of sea ice based on spaceborne GNSS-R has been rapidly growing. The goal of this paper is to provide a review of the state-of-the-art methods for sea ice remote sensing offered by the GNSS-R technique. In this review, the fundamentals of these applications are described, and their performances are evaluated. Specifically, recent progress in sea ice sensing using TDS-1 data is highlighted including sea ice detection, sea ice concentration estimation, sea ice type classification, sea ice thickness retrieval, and sea ice altimetry. In addition, studies of sea ice sensing using airborne and ground-based data are also noted. Lastly, applications based on various platforms along with remaining challenges are summarized and possible future trends are explored. In this review, concepts, research methods, and experimental techniques of GNSS-R-based sea ice sensing are delivered, and this can benefit the scientific community by providing insights into this topic to further advance this field or transfer the relevant knowledge and practice to other studies.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Arctic sea-ice motion in summer from the brightness temperature of the AMSR2 36GHz channel;International Journal of Digital Earth;2024-02-05

2. Development and Application of a GNSS-R Error Model for Hurricane Winds;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

3. Surface Reflectivity Variations of Global Navigation Satellite System Signals From a Mixed Ice and Water Surface;NAVIGATION: Journal of the Institute of Navigation;2024

4. Stand-Alone Retrieval of Sea Ice Thickness From FY-3E GNOS-R Data;IEEE Geoscience and Remote Sensing Letters;2024

5. Sea Ice Detection from GNSS-R Data Based on Residual Network;Remote Sensing;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3