Learning Diatoms Classification from a Dry Test Slide by Holographic Microscopy

Author:

Memmolo Pasquale,Carcagnì Pierluigi,Bianco VittorioORCID,Merola Francesco,Goncalves da Silva Junior AndouglasORCID,Garcia Goncalves Luis MarcosORCID,Ferraro Pietro,Distante CosimoORCID

Abstract

Diatoms are among the dominant phytoplankters in marine and freshwater habitats, and important biomarkers of water quality, making their identification and classification one of the current challenges for environmental monitoring. To date, taxonomy of the species populating a water column is still conducted by marine biologists on the basis of their own experience. On the other hand, deep learning is recognized as the elective technique for solving image classification problems. However, a large amount of training data is usually needed, thus requiring the synthetic enlargement of the dataset through data augmentation. In the case of microalgae, the large variety of species that populate the marine environments makes it arduous to perform an exhaustive training that considers all the possible classes. However, commercial test slides containing one diatom element per class fixed in between two glasses are available on the market. These are usually prepared by expert diatomists for taxonomy purposes, thus constituting libraries of the populations that can be found in oceans. Here we show that such test slides are very useful for training accurate deep Convolutional Neural Networks (CNNs). We demonstrate the successful classification of diatoms based on a proper CNNs ensemble and a fully augmented dataset, i.e., creation starting from one single image per class available from a commercial glass slide containing 50 fixed species in a dry setting. This approach avoids the time-consuming steps of water sampling and labeling by skilled marine biologists. To accomplish this goal, we exploit the holographic imaging modality, which permits the accessing of a quantitative phase-contrast maps and a posteriori flexible refocusing due to its intrinsic 3D imaging capability. The network model is then validated by using holographic recordings of live diatoms imaged in water samples i.e., in their natural wet environmental condition.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3