Author:
Li Xinyu,Gao Xiaoguang,Wang Chenfeng
Abstract
Learning accurate Bayesian Network (BN) structures of high-dimensional and sparse data is difficult because of high computation complexity. To learn the accurate structure for high-dimensional and sparse data faster, this paper adopts a divide and conquer strategy and proposes a block learning algorithm with a mutual information based K-means algorithm (BLMKM algorithm). This method utilizes an improved K-means algorithm to block the nodes in BN and a maximum minimum parents and children (MMPC) algorithm to obtain the whole skeleton of BN and find possible graph structures based on separated blocks. Then, a pruned dynamic programming algorithm is performed sequentially for all possible graph structures to get possible BNs and find the best BN by scoring function. Experiments show that for high-dimensional and sparse data, the BLMKM algorithm can achieve the same accuracy in a reasonable time compared with non-blocking classical learning algorithms. Compared to the existing block learning algorithms, the BLMKM algorithm has a time advantage on the basis of ensuring accuracy. The analysis of the real radar effect mechanism dataset proves that BLMKM algorithm can quickly establish a global and accurate causality model to find the cause of interference, predict the detecting result, and guide the parameters optimization. BLMKM algorithm is efficient for BN learning and has practical application value.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献