Prediction of Air Quality Combining Wavelet Transform, DCCA Correlation Analysis and LSTM Model

Author:

Zhang Zheng1,Chen Haibo1,Huang Xiaoli1

Affiliation:

1. School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China

Abstract

In the context of global climate change, air quality prediction work has a substantial impact on humans’ daily lives. The current extensive usage of machine learning models for air quality forecasting has resulted in significant improvements to the sector. The long short-term memory network is a deep learning prediction model, which adds a forgetting layer to a recurrent neural network and has several applications in air quality prediction. The experimental data presented in this research include air pollution data (SO2, NO2, PM10, PM2.5, O3, and CO) and meteorological data (temperature, barometric pressure, humidity, and wind speed). Initially, using air pollution data to calculate the air pollution index (AQI) and the wavelet transform with the adaptive Stein risk estimation threshold is utilized to enhance the quality of meteorological data. Using detrended cross-correlation analysis (DCCA), the mutual association between pollution elements and meteorological elements is then quantified. On short, medium, and long scales, the prediction model’s accuracy increases by 1%, 1.6%, 2%, and 5% for window sizes (h) of 24, 48, 168, and 5000, and the efficiency increases by 5.72%, 8.64%, 8.29%, and 3.42%, respectively. The model developed in this paper has a substantial improvement effect, and its application to the forecast of air quality is of immense practical significance.

Funder

Key Project of the Application Foundation of Sichuan Science and Technology Department, China

Graduate Innovation Fund of Xihua University, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3