Improved Stress Classification Using Automatic Feature Selection from Heart Rate and Respiratory Rate Time Signals

Author:

Iqbal Talha1ORCID,Elahi Adnan2ORCID,Wijns William13,Amin Bilal12ORCID,Shahzad Atif14

Affiliation:

1. Smart Sensor Lab, Lambe Institute of Translational Research, College of Medicine, Nursing Health Sciences, University of Galway, H91 TK33 Galway, Ireland

2. Electrical and Electronic Engineering, University of Galway, H91 TK33 Galway, Ireland

3. CÚRAM Center for Research in Medical Devices, H91 W2TY Galway, Ireland

4. Centre for Systems Modelling and Quantitative Biomedicine (SMQB), University of Birmingham, Birmingham B15 2TT, UK

Abstract

Time-series features are the characteristics of data periodically collected over time. The calculation of time-series features helps in understanding the underlying patterns and structure of the data, as well as in visualizing the data. The manual calculation and selection of time-series feature from a large temporal dataset are time-consuming. It requires researchers to consider several signal-processing algorithms and time-series analysis methods to identify and extract meaningful features from the given time-series data. These features are the core of a machine learning-based predictive model and are designed to describe the informative characteristics of the time-series signal. For accurate stress monitoring, it is essential that these features are not only informative but also well-distinguishable and interpretable by the classification models. Recently, a lot of work has been carried out on automating the extraction and selection of times-series features. In this paper, a correlation-based time-series feature selection algorithm is proposed and evaluated on the stress-predict dataset. The algorithm calculates a list of 1578 features of heart rate and respiratory rate signals (combined) using the tsfresh library. These features are then shortlisted to the more specific time-series features using Principal Component Analysis (PCA) and Pearson, Kendall, and Spearman correlation ranking techniques. A comparative study of conventional statistical features (like, mean, standard deviation, median, and mean absolute deviation) versus correlation-based selected features is performed using linear (logistic regression), ensemble (random forest), and clustering (k-nearest neighbours) predictive models. The correlation-based selected features achieved higher classification performance with an accuracy of 98.6% as compared to the conventional statistical feature’s 67.4%. The outcome of the proposed study suggests that it is vital to have better analytical features rather than conventional statistical features for accurate stress classification.

Funder

Science Foundation Ireland

University of Birmingham Dynamic Investment Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3