Application of Quantum–Chemical Methods in the Forensic Prediction of Psychedelic Drugs’ Spectra (IR, NMR, UV–VIS, and MS): A Case Study of LSD and Its Analogs

Author:

Džodić Jelica1,Milenković Dejan2ORCID,Marković Milica1,Marković Zoran2,Dimić Dušan1ORCID

Affiliation:

1. Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

2. Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia

Abstract

Lysergic acid diethylamide (LSD) and its analogs are commonly encountered substances at crime scenes due to their misuse as hallucinogenic compounds. Modern methods have led to synthesizing different LSD analogs with pronounced physiological effects. Theoretical methods can be a valuable tool for predicting the spectra and stability of novel substances, especially when experimental data are partially available. The current work describes the application of theoretical methods in predicting IR, NMR, UV–VIS, and MS spectra of LSD based on the optimized structure at the M05-2X/6-311++G(d,p) level of theory. A suitable functional has been determined by comparison of the theoretically obtained geometrical parameters with the experimental ones based on the crystallographic structure. The MAE values for the structure optimized at M05-2X/6-311++G(d,p) level of theory were 0.0436 Å (bond lengths) and 2.70° (bond angles). The IR spectra of LSD and LSD tartrate have been described in detail, with the prominent bands being well reproduced (the difference between experimental and theoretical C=O stretching vibration wavenumbers was lower than 11 cm−1). Detailed assignment of 13C NMR spectra led to a high correlation factor (0.999) and low mean absolute error (2.0 ppm) between experimental and theoretical chemical shifts. Optimizing the ground and excited states allowed for the calculation of the energy difference of 330 nm, which reproduced the observed band position in the UV–VIS spectrum of LSD. The most abundant fragments in the experimental mass spectrum (at 323, 221, 207, 181, and 72 m/z) have been optimized, and their stability has been discussed from the structural point of view. This methodology has been validated by comparison with the experimental GC-MS spectra of sample seized at the crime screen and by structure optimization and computation of NMR spectra of common LSD analogs. The theoretical methods for the structure determination and prediction of spectra show great potential in the fast-developing world of new psychedelics.

Funder

Ministry of Education, Science, and Technological Development, Republic of Serbia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3