Unsupervised Deep Embedded Clustering for High-Dimensional Visual Features of Fashion Images

Author:

Malhi Umar Subhan1,Zhou Junfeng1ORCID,Yan Cairong1,Rasool Abdur2ORCID,Siddeeq Shahbaz1,Du Ming1

Affiliation:

1. School of Computer Science and Technology, Donghua University, Shanghai 200051, China

2. Shenzhen Key Laboratory for High Performance Data Mining, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

Fashion image clustering is the key to fashion retrieval, forecasting, and recommendation applications. Manual labeling-based clustering is both time-consuming and less accurate. Currently, popular methods for extracting features from data use deep learning techniques, such as a Convolutional Neural Network (CNN). These methods can generate high-dimensional feature vectors, which are effective for image clustering. However, high dimensions can lead to the curse of dimensionality, which makes subsequent clustering difficult. The fashion images-oriented deep clustering method (FIDC) is proposed in this paper. This method uses CNN to generate a 4096-dimensional feature vector for each fashion image through migration learning, then performs dimensionality reduction through a deep-stacked auto-encoder model, and finally performs clustering on these low-dimensional vectors. High-dimensional vectors can represent images, and dimensionality reduction avoids the curse of dimensionality during clustering tasks. A particular point in the method is the joint learning and optimization of the dimensionality reduction process and the clustering task. The optimization process is performed using two algorithms: back-propagation and stochastic gradient descent. The experimental findings show that the proposed method, called FIDC, has achieved state-of-the-art performance.

Funder

Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3