Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes

Author:

Armghan Ammar1ORCID,Alsharari Meshari1,Aliqab Khaled1ORCID,Singh Mehtab2,Abd El-Mottaleb Somia A.3ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

2. Department of Electronics and Communication Engineering, University Institute of Engineering, Chandigarh University, Mohali 140413, Punjab, India

3. Alexandria Higher Institute of Engineering and Technology, Alexandria 21311, Egypt

Abstract

The need for a high-speed transmission network has become essential due to the exponential increase in traffic. In this paper, a free-space-optics (FSO) link modelled by integrating two multiplexing techniques, i.e., spectral amplitude coding-optical code division multiple access (SAC-OCDMA) using zero cross correlation (ZCC) codes and polarization division multiplexing (PDM), is proposed. On the X-polarization (XPolar) state, three users with three different ZCC codes are transmitted. In addition, another three users with the same ZCC codes are transmitted on the Y-polarization (YPolar) state. Each user carries 20 Gbps of information. Weather conditions, such as clear, fog, and snowfall, are considered when assessing the efficacy of our suggested model. The results exhibit 120 Gbps transmission at 10 km under clear weather. For foggy weather, the propagation range varies from 1.6 km to 0.76 km according to the density of the fog. Moreover, the system can transport information up to 1.2 km during wet snowfall, though this range decreases to 0.26 km under dry snowfall showing that the highest attenuation is caused by dry snowfall weather conditions. The achieved ranges are obtained with a bit error rate ≤10−9 and Q-factor greater than 6. Consequently, this proposed FSO model is suggested for use in 5G and 6G high speed transmission networks.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3