Anomaly Detection of Permanent Magnet Synchronous Motor Based on Improved DWT-CNN Multi-Current Fusion

Author:

Tang Minqi1,Liang Lihua1ORCID,Zheng Haitao1,Chen Junjun1,Chen Dongdong2

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

2. Key Laboratory of Special Equipment Safety Testing Technology of Zhejiang Province, Zhejiang Academy of Special Equipment Science, Hangzhou 310020, China

Abstract

The Permanent Magnet Synchronous Motor (PMSM) is the power source maintaining the stable and efficient operation of various pieces of equipment; hence, its reliability is crucial to the safety of public equipment. Convolutional Neural Network (CNN) models face challenges in extracting features from PMSM current data. A new Discrete Wavelet Transform Convolutional Neural Networks (DW-CNN) feature with fusion weight updating Long Short-Term Memory (LSTM) anomaly detection is proposed in this paper. This approach combines Discrete Wavelet Transform (DWT) with high and low-frequency separation processing and LSTM. The anomaly detection method adopts DWT and CNN by separating high and low-frequency processing. Moreover, this method combines the hybrid attention mechanism to extract the multi-current signal features and detects anomalies based on weight updating the LSTM network. Experiments on the motor bearing real fault dataset and the PMSM stator fault dataset prove the method’s strong capability in fusing current features and detecting anomalies.

Funder

Natural Science Foundation of Zhejiang Province

Zhejiang Provincial Science and Technology Programme

Zhejiang Market Supervision Bureau

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3