Scenario Simulation of Land Use and Cover under Safeguarding Ecological Security: A Case Study of Chang-Zhu-Tan Metropolitan Area, China

Author:

Deng Zhiwei1ORCID,Quan Bin12ORCID,Zhang Haibo1ORCID,Xie Hongqun1,Zhou Ze1

Affiliation:

1. College of Geography and Tourism, Hengyang Normal University, Hengyang 421002, China

2. Hengyang Base of International Centre on Space Technologies for Natural and Cultural Heritage under the Auspices of UNESCO, Hengyang 421002, China

Abstract

Scenario-based simulation in land use and cover change (LUCC) is a practical approach to maintaining ecological security. Many studies generally set constraints of LUCC utilizing ecological patches but without consideration of corridors connecting these patches. Here, we constructed a framework to balance urban growth and ecological security by integrating ecological security patterns (ESPs) into the PLUS model. This study selected Chang-Zhu-Tan Metropolitan Area (CZTMA) in central China as a typical case. Specifically, coupling quantitative demand with spatial constraints of multiple levels of ESPs, this study designed four scenarios, including historical tendency (HT), urban growth (UG), ecological conservation (EC), and coordinating city development and ecological protection (CCE). Then, the transformations and landscape patterns of LUCC were analyzed to evaluate the future land change from 2020 to 2050. The results show sixty-one key ecological sources in the CZTMA, mainly in higher-elevation forested areas. Forty-six ecological corridors were estimated using circuit theory. The building expansion was driven by accessibility to transportation and government locations and will contribute to the loss of forest and cropland in the future. The feature of different scenarios in alleviating the increasing fragmentation of patches and reducing the loss amount of ecological land showed EC > CCE > HT > UG. This study developed the ESP-PLUS framework and its modeling idea, which has the potential to be applied in other regions. This extension would assist decision-makers and urban planners in formulating sustainable land strategies that effectively reconcile eco-environmental conservation with robust economic growth, achieving a mutually beneficial outcome.

Funder

Open Foundation of Hengyang Base of International Centre on Space Technologies for Natural and Cultural Heritage under the auspices of UNESCO

Natural Science Foundation of Hunan Province

Scientific Research Fund of Hunan Provincial Education Department

Science Foundation of Hengyang Normal University

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3