Displacement Identification by Computer Vision for Condition Monitoring of Rail Vehicle Bearings

Author:

Lei Lei,Song Dongli,Liu ZhendongORCID,Xu Xiao,Zheng ZejunORCID

Abstract

Bearings of rail vehicles bear various dynamic forces. Any fault of the bearing seriously threatens running safety. For fault diagnosis, vibration and temperature measured from the bogie and acoustic signals measured from trackside are often used. However, installing additional sensing devices on the bogie increases manufacturing cost while trackside monitoring is susceptible to ambient noise. For other application, structural displacement based on computer vision is widely applied for deflection measurement and damage identification of bridges. This article proposes to monitor the health condition of the rail vehicle bearings by detecting the displacement of bolts on the end cap of the bearing box. This study is performed based on an experimental platform of bearing systems. The displacement is monitored by computer vision, which can image real-time displacement of the bolts. The health condition of bearings is reflected by the amplitude of the detected displacement by phase correlation method which is separately studied by simulation. To improve the calculation rate, the computer vision only locally focuses on three bolts rather than the whole image. The displacement amplitudes of the bearing system in the vertical direction are derived by comparing the correlations of the image’s gray-level co-occurrence matrix (GLCM). For verification, the measured displacement is checked against the measurement from laser displacement sensors, which shows that the displacement accuracy is 0.05 mm while improving calculation rate by 68%. This study also found that the displacement of the bearing system increases with the increase in rotational speed while decreasing with static load.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. Research on Intelligent Fault Diagnosis Technique of Axle Box Bearing of High Speed Train;Li,2017

2. Vibration Characteristics and Experimental Study of Axle Box System of High Speed Train;Niu,2019

3. A Real-Time Fault Early Warning Method for a High-Speed EMU Axle Box Bearing

4. Structural monitoring of movable bridge mechanical components for maintenance decision-making

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3