An Improved Bytewise Approximate Matching Algorithm Suitable for Files of Dissimilar Sizes

Author:

Gayoso Martínez VíctorORCID,Hernández-Álvarez Fernando,Hernández Encinas LuisORCID

Abstract

The goal of digital forensics is to recover and investigate pieces of data found on digital devices, analysing in the process their relationship with other fragments of data from the same device or from different ones. Approximate matching functions, also called similarity preserving or fuzzy hashing functions, try to achieve that goal by comparing files and determining their resemblance. In this regard, ssdeep, sdhash, and LZJD are nowadays some of the best-known functions dealing with this problem. However, even though those applications are useful and trustworthy, they also have important limitations (mainly, the inability to compare files of very different sizes in the case of ssdeep and LZJD, the excessive size of sdhash and LZJD signatures, and the occasional scarce relationship between the comparison score obtained and the actual content of the files when using the three applications). In this article, we propose a new signature generation procedure and an algorithm for comparing two files through their digital signatures. Although our design is based on ssdeep, it improves some of its limitations and satisfies the requirements that approximate matching applications should fulfil. Through a set of ad-hoc and standard tests based on the FRASH framework, it is possible to state that the proposed algorithm presents remarkable overall detection strengths and is suitable for comparing files of very different sizes. A full description of the multi-thread implementation of the algorithm is included, along with all the tests employed for comparing this proposal with ssdeep, sdhash, and LZJD.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference63 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3