Efficient Hyper-Parameter Selection in Total Variation-Penalised XCT Reconstruction Using Freund and Shapire’s Hedge Approach

Author:

Chrétien Stéphane,Lohvithee Manasavee,Sun Wenjuan,Soleimani Manuchehr

Abstract

This paper studies the problem of efficiently tuning the hyper-parameters in penalised least-squares reconstruction for XCT. Discovered through the lens of the Compressed Sensing paradigm, penalisation functionals such as Total Variation types of norms, form an essential tool for enforcing structure in inverse problems, a key feature in the case where the number of projections is small as compared to the size of the object to recover. In this paper, we propose a novel hyper-parameter selection approach for total variation (TV)-based reconstruction algorithms, based on a boosting type machine learning procedure initially proposed by Freund and Shapire and called Hedge. The proposed approach is able to select a set of hyper-parameters producing better reconstruction than the traditional Cross-Validation approach, with reduced computational effort. Traditional reconstruction methods based on penalisation can be made more efficient using boosting type methods from machine learning.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3