Abstract
Recently, smart stents have been developed by integrating various sensors with intravascular stents for detecting vascular restenosis or monitoring intravascular biomedical conditions such as blood pressure or blood flow velocity. The information on biomedical signals is then transmitted to external monitoring systems via wireless communications. Due to the limited volumes of blood vessels and limited influence of blood flow, antennas with good radiation performance are required for intravascular applications. In this paper, we propose a stent antenna composed of multiple rings containing crowns and struts, where each ring is connected with one connector. Unlike a conventional stent, wherein each ring is connected with several connectors, the single connector prevents the random distribution of electrical current and thus achieves good radiation performance. The implantable stent antenna is designed for the frequency range of 2 to 3 GHz for minimum penetration loss in the human body and tissues. Mechanical FEM simulations were conducted to ensure that the mechanical deformation was within specific limits during balloon expansions. A prototype was fabricated with laser cutting techniques and its radiation performance experimentally characterized. It was demonstrated that the fabricated stent antenna had an omnidirectional radiation pattern for arbitrary receiving angles, a gain of 1.38 dBi, and a radiation efficiency of 74.5% at a resonant frequency of 2.07 GHz. The main contribution of this work was the manipulation of the current distributions of the stent for good EM radiation performances which needed to be further examined while inserted inside human bodies. These research results should contribute to the further development of implantable wireless communications and intravascular monitoring of biomedical signals such as blood pressure and blood flow velocity.
Funder
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献