Abstract
Neuroinflammation, apoptosis, and oxidative stress are connected to the pathogenesis of neurodegenerative diseases (NDDs). Targeting these three factors, the intervention of neuroprotective agents may have great potential in the treatment of NDDs. In the current study, the anti-inflammatory effects of the methanol extract of Allium cepa (MEAC) in lipopolysaccharide (LPS)-induced BV-2 microglial cells were investigated. MEAC has been studied in regard to the regulation of the antiapoptotic gene (Bcl-2) and various antioxidant enzyme (HO-1, NQO-1, and catalase) expressions in N27-A cells. Additionally, the protective action of MEAC has also been studied against MPP+-induced death in N27-A cells. The results suggest that MEAC is significantly protected from NO release and increase iNOS expression at the mRNA and protein levels in LPS-stimulated BV-2 microglial cells. MEAC treatment also protects COX-2 expression at the mRNA and protein levels. Furthermore, MEAC treatment prevents LPS-stimulated increases of proinflammatory cytokines, including TNF-α, IL-6, and IL-1β. In N27-A cells, MEAC treatment significantly upregulates antiapoptotic gene (Bcl-2) and antioxidant enzyme (HO-1, NQO1, and catalase) expressions. Moreover, MEAC treatment protects against MPP+-induced death in N27-A cells. To conclude, A cepa extract takes protective action against LPS and MPP+, and upregulates the antioxidant enzymes that could potentially be used in the therapy of NDDs.
Funder
Ministry of Education, Science and Technology
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献