Effect of Manitoba-Grown Red-Osier Dogwood Extracts on Recovering Caco-2 Cells from H2O2-Induced Oxidative Damage

Author:

Yang RunqiangORCID,Hui Qianru,Jiang QianORCID,Liu Shangxi,Zhang Hua,Wu Jiandong,Lin FrancisORCID,O Karmin,Yang ChengboORCID

Abstract

Red-osier dogwood, a native species of flowering plant in North America, has been reported to have anti-oxidative properties because of abundant phenolic compounds; this could be promising as a functional food or a feed additive. In the present study, an oxidative damage model using 1.0 mM hydrogen peroxide (H2O2) in Caco-2 cells was established to evaluate the antioxidative effects of red-osier dogwood extracts (RDE). The results showed that 1.0 mM H2O2 pre-exposure for 3 h significantly decreased cell viability, and increased interleukin 8 (IL-8) secretion and the intracellular reactive oxygen species (ROS) level. Caco-2 cells were treated with 100 µg/mL RDE for 24 h after pre-exposure to H2O2. It was found that the decreased cell viability caused by H2O2 was significantly restored by a subsequent 100 µg/mL RDE treatment. Furthermore, the IL-8 secretion and ROS level were significantly blocked by RDE, accompanied by the enhanced gene expression of hemeoxygenase-1 (HO-1), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), and the enhanced protein expression of the nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Moreover, RDE improved barrier functions in Caco-2 cells. Using RDE reduced the diffusion of fluorescein isothiocyanate (FITC)-dextran and increased the transepithelial resistance (TEER) value. The relative mRNA level of tight junction claudin-1, claudin-3, and occludin was elevated by RDE. These extracts also repaired the integrity of zonula occludens-1 (ZO-1) damaged by H2O2 and increased the protein expressions of ZO-1 and claudin-3 in the H2O2-pretreated cells. These results illustrated that RDE reduced the ROS level and enhanced the barrier function in oxidative-damaged epithelial cells.

Funder

Natural Sciences and Engineering Research Council of Canada

University of Manitoba

China Scholarship Council

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3