Inhibitory Effect of Nelumbo nucifera Leaf Extract on 2-Acetylaminofluorene-induced Hepatocarcinogenesis Through Enhancing Antioxidative Potential and Alleviating Inflammation in Rats

Author:

Yang Mon-Yuan,Hung Tung-Wei,Wang Chau-Jong,Tseng Tsui-Hwa

Abstract

Leaf extract of Nelumbo nucifera (NLE) has been demonstrated to possess anti-atherosclerosis, improve alcohol-induced steatohepatitis, prevent high-fat diet-induced obesity, and inhibit the proliferation and metastasis of human breast cancer cells. This study determines the chemopreventive role of NLE against 2-acetylaminofluorene (AAF)-induced hepatocellular carcinoma (HCC) in rats. AAF was used to induce hepatocarcinogenesis in rats through genetic and nongenetic effects. After administration for 12 weeks, NLE (0.5–2%) supplementation orally inhibited AAF (0.03%)-induced hepatic fibrosis which appears during the development of premalignant lesions in rats. After the 6-month experiment, NLE supplementation resulted in decreasing AAF-induced serum parameters of hepatic injury, including the level of triglycerides, total cholesterol, alpha-fetoprotein (AFP), and inflammatory mediator interleukin (IL)-6 and tumor necrosis factor (TNF)-α as well as the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (γGT). NLE supplementation also reduced AAF-induced lipid peroxidation and 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation in the rat liver. Hepatic histopathological investigation revealed that NLE supplementation attenuated the AAF-induced HCC and glutathione S-transferase-Pi (GST-Pi) expression. Furthermore, NLE supplementation increased the expression of transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream targets, including catalase, glutathion peroxidase (GPx), and superoxide dismutase 1 (SOD-1) in the rat liver. Our findings indicate that NLE supplementation inhibited AAF-induced hepatocarcinogenesis by enhancing antioxidative potential and alleviating inflammation in rats.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3