Ultrafast Laser Patterning of Metals Commonly Used in Medical Industry: Surface Roughness Control with Energy Gradient Pulse Sequences

Author:

Leggio Luca,Di Maio Yoan,Pascale-Hamri Alina,Egaud Gregory,Reynaud Stephanie,Sedao XxxORCID,Mauclair CyrilORCID

Abstract

Ultrafast laser ablation is widely used as a versatile method for accurate micro-machining of polymers, glasses and metals for a variety of industrial and biomedical applications. We report on the use of a novel process parameter, the modulation of the laser pulse energy during the multi-scan texturing of surfaces. We show that this new and straightforward control method allows us to attain higher and lower roughness (Ra) values than the conventional constant pulse energy irradiation sequence. This new multi-scanning laser ablation strategy was conducted on metals that are commonly used in the biomedical industry, such as stainless steel, titanium, brass and silver samples, using a linear (increasing or decreasing) gradient of pulse energy, i.e., varying the pulse energy across successive laser scans. The effects of ablation were studied in terms of roughness, developed interfacial area ratio, skewness and ablation efficiency of the processed surfaces. Significantly, the investigation has shown a global trend for all samples that the roughness is minimum when a decreasing energy pulse sequence is employed, i.e., the irradiation sequence ends up with the applied laser fluences close to threshold laser fluences and is maximum with increasing energy distribution. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis on single craters with the three different energy deposition conditions revealed a chaotic and random material redistribution in the cases of uniform and increasing energy distributions and the presence of regular laser-induced periodic surface structures (LIPSS) at the bottom of the ablation region in the case of decreasing energy distribution. It is also shown that the ablation efficiency of the ablated surfaces does not significantly change between the three cases. Therefore, this novel energy control strategy permits the control of the roughness of the processed surfaces without losing the ablation efficiency.

Funder

ADEME

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3