Fracture Fillings and Implication of Fluid Activities in Volcanic Rocks: Dixi Area in Kelameili Gas Field, Junggar Basin, Northwestern China

Author:

Feng Mingyou,Liu Tian,Lin Tong,Liu Xiaohong,Li Ningxin,Xi Aihua

Abstract

The Carboniferous Batamayineishan Formation of the Kelameili Gas Field is a specific weathered crust-related volcanic reservoir that has a significant production rate in the Junggar Basin, Northwestern China, attributed to debatable processes of fluid evolution. The results suggest that various types of fluids occurring in volcanic rocks lead to the filling of quartz and calcite in fractures and their associated alteration haloes. The silica that formed quartz veins was mainly derived from deep hydrothermal fluids, while the carbon dioxide that formed calcite veins originated from sources characterized by mixing and alteration of deep hydrothermal and hydrocarbon fluids. Siliceous hydrothermal fluids rich in sulphur dioxide and other volatile components were driven by a pressure gradient and buoyancy, and circulated both laterally and vertically along the fractures, forming quartz veins and tension fractures under different temperature conditions. Moreover, changes in salinity, pressure, and carbon dioxide of deep fluids, varying from acidic to weakly alkaline, resulted in earlier calcite precipitation in contraction fractures and weathered fractures. Tectonic uplift resulted in the long-term exposure of volcanic rocks, where fresh water mixed with the partially alkaline fluid escaping the basin to form calcite cements, thus retaining the characteristics of a seepage environment in the weathered fractures. Structural fractures occurred due to tectonic movements during the burial period. Filling and leakage of hydrocarbons caused pore fluids to convert from acidic to alkaline, precipitating late sparry calcite in dissolution fractures. Late hydrothermal fluid metasomatism, brought about by infiltration into the permeable zone, caused partial dissolution of local calcite along cleavage cracks.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3