Author:
Feng Mingyou,Liu Tian,Lin Tong,Liu Xiaohong,Li Ningxin,Xi Aihua
Abstract
The Carboniferous Batamayineishan Formation of the Kelameili Gas Field is a specific weathered crust-related volcanic reservoir that has a significant production rate in the Junggar Basin, Northwestern China, attributed to debatable processes of fluid evolution. The results suggest that various types of fluids occurring in volcanic rocks lead to the filling of quartz and calcite in fractures and their associated alteration haloes. The silica that formed quartz veins was mainly derived from deep hydrothermal fluids, while the carbon dioxide that formed calcite veins originated from sources characterized by mixing and alteration of deep hydrothermal and hydrocarbon fluids. Siliceous hydrothermal fluids rich in sulphur dioxide and other volatile components were driven by a pressure gradient and buoyancy, and circulated both laterally and vertically along the fractures, forming quartz veins and tension fractures under different temperature conditions. Moreover, changes in salinity, pressure, and carbon dioxide of deep fluids, varying from acidic to weakly alkaline, resulted in earlier calcite precipitation in contraction fractures and weathered fractures. Tectonic uplift resulted in the long-term exposure of volcanic rocks, where fresh water mixed with the partially alkaline fluid escaping the basin to form calcite cements, thus retaining the characteristics of a seepage environment in the weathered fractures. Structural fractures occurred due to tectonic movements during the burial period. Filling and leakage of hydrocarbons caused pore fluids to convert from acidic to alkaline, precipitating late sparry calcite in dissolution fractures. Late hydrothermal fluid metasomatism, brought about by infiltration into the permeable zone, caused partial dissolution of local calcite along cleavage cracks.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献