Mine Backfilling in the Permafrost, Part II: Effect of Declining Curing Temperature on the Short-Term Unconfined Compressive Strength of Cemented Paste Backfills

Author:

Mbonimpa Mamert,Kwizera ParreinORCID,Belem Tikou

Abstract

When cemented paste backfill (CPB) is used to fill underground stopes opened in permafrost, depending on the distance from the permafrost wall, the curing temperature within the CPB matrix decreases progressively over time until equilibrium with the permafrost is reached (after several years). In this study, the influence of declining curing temperature (above freezing temperature) on the evolution of the unconfined compressive strength (UCS) of CPB over 28 days’ curing is investigated. CPB mixtures were prepared with a high early (HE) cement and a blend of 80% slag and 20% General Use cement (S-GU) at 5% and 3% contents and cured at room temperature in a humidity chamber and under decreasing temperatures in a temperature-controlled chamber. Results indicate that UCS is higher for CPB cured at room temperature than under declining temperatures. UCS increases progressively from the stope wall toward the inside of the CPB mass. Under declines in curing temperature, HE cement provides better short-term compressive strength than does S-GU binder. In addition, the gradual decline in temperature does not appear to affect the fact that the higher the binder proportion, the greater the strength development. Therefore, UCS is higher for samples prepared with 5% than 3% HE cement. Findings are discussed in terms of practical applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference39 articles.

1. Mine Backfill;Hassani,1998

2. A review of underground mine backfilling methods with emphasis on cemented paste backfill;Sheshpari;Electron. J. Geotech. Eng.,2015

3. Properties and Application of Backfill Materials in Coal Mines in China

4. A contribution to understanding the hardening process of cemented pastefill

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3