Low-Computational-Cost Technique for Modeling Macro Fiber Composite Piezoelectric Actuators Using Finite Element Method

Author:

Emad DiaaORCID,Fanni Mohamed A.,Mohamed Abdelfatah M.,Yoshida ShigeoORCID

Abstract

The large number of interdigitated electrodes (IDEs) in a macro fiber composite (MFC) piezoelectric actuator dictates using a very fine finite element (FE) mesh that requires extremely large computational costs, especially with a large number of actuators. The situation becomes infeasible if repeated finite element simulations are required, as in control tasks. In this paper, an efficient technique is proposed for modeling MFC using a finite element method. The proposed technique replaces the MFC actuator with an equivalent simple monolithic piezoceramic actuator using two electrodes only, which dramatically reduces the computational costs. The proposed technique was proven theoretically since it generates the same electric field, strain, and displacement as the physical MFC. Then, it was validated with the detailed FE model using the actual number of IDEs, as well as with experimental tests using triaxial rosette strain gauges. The computational costs for the simplified model compared with the detailed model were dramatically reduced by about 74% for memory usage, 99% for result file size, and 98.6% for computational time. Furthermore, the experimental results successfully verified the proposed technique with good consistency. To show the effectiveness of the proposed technique, it was used to simulate a morphing wing covered almost entirely by MFCs with low computational cost.

Publisher

MDPI AG

Subject

General Materials Science

Reference50 articles.

1. An investigation into the performance of macro-fiber composites for sensing and structural vibration applications

2. Macro Fiber Composite—Datasheet. [online]https://www.smart-material.com/media/Datasheets/MFC_V2.4-datasheet-web.pdf

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3