Hybrid Laser Deposition of Composite WC-Ni Layers with Forced Local Cryogenic Cooling

Author:

Lisiecki AleksanderORCID,Ślizak Dawid

Abstract

The purpose of this study was to demonstrate the effect of forced and localized cooling by nitrogen vapours stream under cryogenic conditions during laser deposition of WC-Ni powder on the geometry, microstructure of clad layers and dry sliding wear resistance of the coatings. For this purpose, comparative tests were performed by conventional laser cladding at free cooling conditions in ambient air and by the developed novel process of laser deposition with additional localized cooling of the solidifying deposit by nitrogen vapours stream. Due to presence of gaseous nitrogen in the region of the melt pool and solidifying deposit, the process was considered as combining laser cladding and laser gas nitriding (performed simultaneously), thus the hybrid process. The influence of the heat input and cooling conditions on the geometrical features, dilution rate, share of carbides relative to the matrix, and the fraction share of carbides, as well as hardness profiles on cross sections of single stringer beads was analysed and presented. The XRD, EDS analysis and the sieve test of the experimental powder were used to characterize the composite WC-Ni type powder. The OM, SEM, EDS and XRD test methods were used to study the microstructure, chemical and phase composition of clad layers. Additionally, ball-on-disc tests were performed to determine the wear resistance of representative coatings under dry sliding conditions. The results indicate that the novel demonstrated technique of localized forced cooling of the solidifying deposit has advantageous effect, because it provides approximately 20% lower penetration depth and dilution, decreases tendency for tungsten carbides decomposition, provides more uniform distribution and higher share of massive eutectic W2C-WC carbides across the coating. While the conventionally laser cladded layers show tendency for decomposition of carbide particles and resolidifying dendritic complex carbides mainly M2C, M3C and M7C3 containing iron, nickel, and tungsten, and with Ni/Ni3B matrix. The quantitative relationship between heat input, cooling conditions and the carbides grain size distribution as well as carbides share in relation to the matrix was determined.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3