Power System Stability Enhancement Using Robust FACTS-Based Stabilizer Designed by a Hybrid Optimization Algorithm

Author:

Behzadpoor Saeed,Davoudkhani Iraj FarajiORCID,Abdelaziz Almoataz YoussefORCID,Geem Zong WooORCID,Hong Junhee

Abstract

Improving the stability of power systems using FACT devices is an important and effective method. This paper uses a static synchronous series compensator (SSSC) installed in a power system to smooth out inter-area oscillations. A meta-heuristic optimization method is proposed to design the supplementary damping controller and its installation control channel within the SSSC. In this method, two control channels, phase and magnitude have been investigated for installing a damping controller to improve maximum stability and resistance in different operating conditions. An effective control channel has been selected. The objective function considered in this optimization method is multi-objective, using the sum of weighted coefficients method. The first function aims to minimize the control gain of the damping controller to the reduction of control cost, and the second objective function moves the critical modes to improve stability. It is defined as the minimum phase within the design constraints of the controller. A hybrid of two well-known meta-heuristic methods, the genetic algorithm (GA) and grey wolf optimizer (GWO) algorithm have been used to design this controller. The proposed method in this paper has been applied to develop a robust damping controller with an optimal control channel based on SSSC for two standard test systems of 4 and 50 IEEE machines. The results obtained from the analysis of eigenvalues and nonlinear simulation of the power system study show the improvement in the stability of the power system as well as the robust performance of the damping in the phase control channel.

Funder

the Energy Cloud R&D Program through the National Research Foundation of Korea

the Ministry of Science, ICT

the Gachon University Research Fund of 2019

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference68 articles.

1. Rogers, G. (2000). Power System Oscillations, Kluwer Academic Publishers.

2. Kundur, P., Balu, N.J., and Lauby, M.G. (1994). Power System Stability and Control, McGraw-Hill.

3. Yu, Y.-N. (1983). Electric Power System Dynamics, Academic Press.

4. Stability Analysis of Power Systems Considering AVR and PSS Output Limiters;Int. J. Electr. Power Energy Syst.,2009

5. Hingorani, N.G., and Gyugyi, L. (2000). Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, Wiley.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3