Numerical Simulation of the Influence of Hydrogen Concentration on Detonation Diffraction Mechanism

Author:

Shamsadin Saeid Mohammad HoseinORCID,Ghodrat MaryamORCID

Abstract

In this study, the impact of hydrogen concentration on deflagration to detonation transition (DDT) and detonation diffraction mechanisms was investigated. The combustion chamber was an ENACCEF facility, with nine obstacles at a blockage ratio of 0.63 and three mixtures with hydrogen concentrations of 13%, 20%, and 30%. Detonation diffraction mechanisms were numerically investigated by a density-based solver of OpenFOAM CFD toolbox named ddtFoam. In this simulation, for the low Mach numbers, the pddtFoam solver was applied, and for high speeds, the pddtFoam solver switched to the ddtFoam solver to simulate flame propagation without resolving all microscopic details in the flow in the CFD grid, and to provide a basis for simulating flame acceleration (FA) and the onset of detonation in large three-dimensional geometries. The results showed that, for the lean H2–air mixture with 13% hydrogen concentration, intense interaction between propagating flame and turbulent flow led to a rapid transition from slow to fast deflagration. However, the onset of detonation did not occur inside the tube. For the H2–air mixture with 20% hydrogen concentration, the detonation initiation appeared in the acceleration tube. It was also found that following the diffraction of detonation, the collision of transverse waves with the wall of the tube and the reflection of transverse waves were the most essential and effective parameters in the re-initiation of the detonation. For the H2–air mixture with 30% hydrogen concentration, the detonation initiation occurred while passing through the obstacles. Subsequently, at detonation diffraction, the direct initiation mechanism was observed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference70 articles.

1. Assessment of the impact of jet flame hazard from hydrogen cars in road tunnels;Eng. Environ. Sci.,2008

2. Detonation diffraction in gases;Combust. Flame,2009

3. Li, L., Li, J.-M., Teo, C.J., Chang, P.-H., Nguyen, V.B., and Khoo, B.C. (2017). Detonation Control for Propulsion, Springer.

4. Methods of re-initiation and critical conditions for a planar detonation transforming to a cylindrical detonation within a confined volume;Combust. Flame,2012

5. The ignition mechanism in irregular structure gaseous detonations;Proc. Combust. Inst.,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3