Influence of Different Heat Loads and Durations on the Field Thermal Response Test

Author:

Ma Yongjie,Zhang Yanjun,Cheng Yuxiang,Zhang Yu,Gao Xuefeng,Deng Hao,Zhang Xin

Abstract

Geothermal energy exhibits considerable development potential in space heating. Shallow geothermal energy stored in the soil in the form of low-grade energy is mainly extracted via the ground source heat pump (GSHP) system. GSHP systems use the subsoil as a heat source, typically involving a vertical borehole heat exchanger (BHE) to extract heat from the formation. Accurate measurement of the thermal properties of the formation is very important for the design of BHEs. At present, the most common and effective method to measure the thermal conductivity of the formation in the field is the thermal response test (TRT). However, the test conditions (heat load, test time) during the thermal response test can impact the test results. Therefore, in this study, a borehole with a depth of 130 m was evaluated in the field. The TRT module and the distributed thermal response test (DTRT) module based on distributed optical fiber temperature sensor (DOFTS) technology were used to monitor the test with different working conditions in real-time. In the field tests, geothermal conditions and the evolution of the formation temperature with time and depth were determined. Based on the test results under different heat loads and test times, the influence of the test conditions on the thermal conductivity results was analyzed and described. A constant temperature zone was located at a depth from 25 m to 50 m, and an increasing temperature zone was located at a depth from 50 m to 130 m, with a geothermal gradient of 3 °C/100 m. The results showed that the heat load slightly influenced the thermal conductivity test results. At the initial stage of the test, the temperature significantly increased from 0 to 12 h. After reaching the quasi-stable state, the test time slightly influenced the thermal conductivity test results. The characteristics of the formation thermal recovery stage after the test stage were studied. The heat load decreased, which could shorten the time for the formation to recover the initial temperature. The results could provide a basis for the optimization of thermal response test conditions.

Funder

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Engineering Research Center of Geothermal Resources Development Technology and Equipment, Ministry of Education, Jilin University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3