Performance Evaluation of a Solar Heat-Driven Poly-Generation System for Residential Buildings Using Various Arrangements of Heat Recovery Units

Author:

Alqaed SaeedORCID,Fouda Ali,Elattar Hassan F.ORCID,Mustafa JawedORCID,Almehmadi Fahad AwjahORCID,Refaey Hassanein A.ORCID,Alharthi Mathkar A.ORCID

Abstract

Poly-generation systems are a feasible alternative to conventional energy production techniques in buildings. A poly-generation system allows for the concurrent production of electricity, heat, cold, and fresh water, with considerable advantages regarding technology, finances, energy recovery, and the environment. In the present study, the organic Rankine cycle (ORC), the humidification–dehumidification desalination system (HDH), and the desiccant cooling system (DCS) are merged with three unique solar-driven poly-generation systems (BS, IS-I, and IS-II) and numerically examined. The proposed options provide energy, space cooling, domestic heating, and potable water to buildings of small/medium scale. Using n-octane ORC working fluid, the impact of operational circumstances on system productivity and execution characteristics was considered. The findings show that (i) the suggested poly-generation systems can provide electrical power, conditioned space cooling, local heating, and fresh water, whereas keeping the conditioned area pleasant, (ii) the IS-I system achieves the best system performance among all compared arrangements (BS and IS-II); (iii) the attained extreme values of W˙net, m˙fresh, Q˙cooling, Q˙heating, and TGOR are 102.0 kW (all systems), 214.70 kg/h (IS-II), 29.940 kW (IS-II), 225.6 kW (IS-I), and 0.6303 (IS-I), respectively.

Funder

Deanship of Scientific Research

Najran University, Najran, Saudi Arabia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3