Random Matrix Theory-Based Reduced-Dimension Space-Time Adaptive Processing under Finite Training Samples

Author:

Song Di,Feng Qi,Chen Shengyao,Xi FengORCID,Liu Zhong

Abstract

Space-time adaptive processing (STAP) is a fundamental topic in airborne radar applications due to its clutter suppression ability. Reduced-dimension (RD)-STAP can release the requirement of the number of training samples and reduce the computational load from traditional STAP, which attracts much attention. However, under the situation that training samples are severely deficient, RD-STAP will become poor like the traditional STAP. To enhance RD-STAP performance in such cases, this paper develops a novel RD-STAP algorithm using random matrix theory (RMT), RMT-RD-STAP. By minimizing the output clutter-plus-noise power, the estimate of the inversion of clutter plus noise covariance matrix (CNCM) can be obtained through optimally manipulating its eigenvalues, thus producing the optimal STAP weight vector. Specifically, the clutter-related eigenvalues are estimated according to the clutter-related sample eigenvalues via RMT, and the noise-related eigenvalue is optimally selected from the noise-related sample eigenvalues. It is found that RMT-RD-STAP significantly outperforms the RD-STAP algorithm when the RMB rule cannot be satisfied. Theoretical analyses and numerical results demonstrate the effectiveness and the performance advantages of the proposed RMT-RD-STAP algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

1. Theory of Adaptive Radar

2. Space-Time Adaptive Processing for Airborne Radar;Ward,1994

3. A STAP overview

4. Rapid Convergence Rate in Adaptive Arrays

5. Principles of Space-Time Adaptive Processing;Klemm,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3