Abstract
Space-time adaptive processing (STAP) is a fundamental topic in airborne radar applications due to its clutter suppression ability. Reduced-dimension (RD)-STAP can release the requirement of the number of training samples and reduce the computational load from traditional STAP, which attracts much attention. However, under the situation that training samples are severely deficient, RD-STAP will become poor like the traditional STAP. To enhance RD-STAP performance in such cases, this paper develops a novel RD-STAP algorithm using random matrix theory (RMT), RMT-RD-STAP. By minimizing the output clutter-plus-noise power, the estimate of the inversion of clutter plus noise covariance matrix (CNCM) can be obtained through optimally manipulating its eigenvalues, thus producing the optimal STAP weight vector. Specifically, the clutter-related eigenvalues are estimated according to the clutter-related sample eigenvalues via RMT, and the noise-related eigenvalue is optimally selected from the noise-related sample eigenvalues. It is found that RMT-RD-STAP significantly outperforms the RD-STAP algorithm when the RMB rule cannot be satisfied. Theoretical analyses and numerical results demonstrate the effectiveness and the performance advantages of the proposed RMT-RD-STAP algorithm.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Reference53 articles.
1. Theory of Adaptive Radar
2. Space-Time Adaptive Processing for Airborne Radar;Ward,1994
3. A STAP overview
4. Rapid Convergence Rate in Adaptive Arrays
5. Principles of Space-Time Adaptive Processing;Klemm,2006
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献