Self-Supervised Learning for Scene Classification in Remote Sensing: Current State of the Art and Perspectives

Author:

Berg PaulORCID,Pham Minh-TanORCID,Courty Nicolas

Abstract

Deep learning methods have become an integral part of computer vision and machine learning research by providing significant improvement performed in many tasks such as classification, regression, and detection. These gains have been also observed in the field of remote sensing for Earth observation where most of the state-of-the-art results are now achieved by deep neural networks. However, one downside of these methods is the need for large amounts of annotated data, requiring lots of labor-intensive and expensive human efforts, in particular for specific domains that require expert knowledge such as medical imaging or remote sensing. In order to limit the requirement on data annotations, several self-supervised representation learning methods have been proposed to learn unsupervised image representations that can consequently serve for downstream tasks such as image classification, object detection or semantic segmentation. As a result, self-supervised learning approaches have been considerably adopted in the remote sensing domain within the last few years. In this article, we review the underlying principles developed by various self-supervised methods with a focus on scene classification task. We highlight the main contributions and analyze the experiments, as well as summarize the key conclusions, from each study. We then conduct extensive experiments on two public scene classification datasets to benchmark and evaluate different self-supervised models. Based on comparative results, we investigate the impact of individual augmentations when applied to remote sensing data as well as the use of self-supervised pre-training to boost the classification performance with limited number of labeled samples. We finally underline the current trends and challenges, as well as perspectives of self-supervised scene classification.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PhilEO Bench: Evaluating Geo-Spatial Foundation Models;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Dense Pseudo-Labels based Semi-supervised Object Detection for Remote Sensing;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Rethinking high-resolution remote sensing image segmentation not limited to technology: a review of segmentation methods and outlook on technical interpretability;International Journal of Remote Sensing;2024-05-21

4. Two-Stage Transfer Learning for Fusion and Classification of Airborne Hyperspectral Imagery;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

5. CDEST: Class Distinguishability-Enhanced Self-Training Method for Adopting Pre-Trained Models to Downstream Remote Sensing Image Semantic Segmentation;Remote Sensing;2024-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3