Oil Spill Detection with Dual-Polarimetric Sentinel-1 SAR Using Superpixel-Level Image Stretching and Deep Convolutional Neural Network

Author:

Zhang Jin,Feng Hao,Luo QingliORCID,Li YuORCID,Zhang Yu,Li Jian,Zeng Zhoumo

Abstract

Synthetic aperture radar (SAR) has been widely applied in oil spill detection on the sea surface due to the advantages of wide area coverage, all-weather operation, and multi-polarization characteristics. Sentinel-1 satellites can provide dual-polarized SAR data, and they have high potential for successful application to oil spill detection. However, the characteristics of the sea surface and oil film on different images are not the same when imaging at different locations and in different conditions, which leads to the inconsistent accuracy of these images with the application of the current oil spill detection methods. In order to avoid the above limitation, we propose an oil spill detection method using image stretching based on superpixels and a convolutional neural network. Experiments were carried out on eight Sentinel-1 dual-pol data, and the optimal superpixel number and image stretching parameters are discussed. Mean intersection over union (MIoU) was used to evaluate classification accuracy. The proposed method could effectively improve the classification accuracy; when the expansion and inhibition coefficients of image stretching were set to 1.6 and 1.2 respectively, the experiments achieved a maximum MIoU of 85.4%, 7.3% higher than that without image stretching.

Funder

Key Project of Tianjin Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise;Liu;Geophys. Monogr. Ser.,2011

2. Oil spill detection by imaging radars: Challenges and pitfalls

3. A Review of Oil Spill Remote Sensing;Merv;Sensors,2017

4. Automatic detection of oil spills in ERS SAR images

5. Oil Spill Detection in Radarsat and Envisat SAR Images

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3