Impact of Topographic Correction on PRISMA Sentinel 2 and Landsat 8 Images

Author:

Santini FedericoORCID,Palombo AngeloORCID

Abstract

Over the past decades, remote sensing satellite sensors have significantly increased their performance and, at the same time, differed in their characteristics. Therefore, making the data repeatable over time and uniform with respect to different platforms has become one of the most challenging issues to obtain a representation of the intrinsic characteristics of the observed target. In this context, atmospheric correction has the role of cleaning the signal from unwanted contributions and moving from the sensor radiance to a quantity more closely related to the intrinsic properties of the target, such as ground reflectance. To this end, atmospheric correction procedures must consider a number of factors, closely related to the specific scene acquired and to the characteristics of the sensor. In mountainous environments, atmospheric correction must include a topographic correction level to compensate for the topographic effects that heavily affect the remote signal. In this paper, we want to estimate the impact of topographic correction on remote sensing images based on a statistical analysis, using data acquired under different illumination conditions with different sensors. We also want to show the benefits of introducing this level of correction in second level products such as PRISMA L2C reflectance, which currently do not implement it.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. A method for the atmospheric correction of ENVISAT/MERIS data over land targets

2. Introduction Digital Image Processing: A Remote Sensing Perspective;Jensen,1996

3. A VNIR/SWIR atmospheric correction algorithm for hyperspectral imagery with adjacency effect

4. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview

5. Atmospheric Correction Algorithm: Spectral Reflectances (MOD09);Vermote,1999

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3