Object-Oriented Unsupervised Classification of PolSAR Images Based on Image Block

Author:

Han BinbinORCID,Han Ping,Cheng ZhengORCID

Abstract

Land Use and Land Cover (LULC) classification is one of the tasks of Polarimetric Synthetic Aperture Radar (PolSAR) images’ interpretation, and the classification performance of existing algorithms is highly sensitive to the class number, which is inconsistent with the reality that LULC classification should have multiple levels of detail in the same image. Therefore, an object-oriented unsupervised classification algorithm for PolSAR images based on the image block is proposed. Firstly, the image is divided into multiple non-overlapping image blocks, and h/q/gray-Wishart classification is performed in each block. Secondly, each cluster obtained is regarded as an object, and the affinity matrix of objects is calculated in the global image. Finally, the objects are merged into the specified class number by density peak clustering (DPC), and the adjacent objects at the block boundary are checked and forced to merge. Experiments are carried out with the measured data of the airborne AIRSAR and E-SAR and the spaceborne GF-3. The experimental results show that the proposed algorithm achieves good classification results under a variety of class numbers.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference31 articles.

1. Review on PolSAR Image Speckle Reduction and Classification Methods;Nie;Acta Autom. Sin.,2019

2. Identification of Terrain Cover using the Optimum Polarimetric Classifier;Kong;J. Electromagnet. Wave,1988

3. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution

4. Support Vector Machine Classification of Land Cover: Application to Polarimetric SAR Data;Fukuda;Proceedings of the 2001 International Geoscience and Remote Sensing Symposium,2001

5. Polarimetric SAR Image Classification Using Multifeatures Combination and Extremely Randomized Clustering Forests

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3