Reliability of Gridded Precipitation Products for Water Management Studies: The Case of the Ankavia River Basin in Madagascar

Author:

Ramahaimandimby ZonirinaORCID,Randriamaherisoa Alain,Jonard FrançoisORCID,Vanclooster MarnikORCID,Bielders Charles L.

Abstract

Hydrological modeling for water management in large watersheds requires accurate spatially-distributed rainfall time series. In case of low coverage density of ground-based measurements, gridded precipitation products (GPPs) from merged satellite-/gauge-/model-based rainfall products constitute an attractive alternative. The quality of which must, nevertheless, be verified. The objective of this study was to evaluate, at different time scales, the reliability of 6 GPPs against a 2-year record from a network of 14 rainfall gauges located in the Ankavia catchment (Madagascar). The GPPs considered in this study are the African Rainfall Estimate Climatology (ARC2), the Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), the European Centre Medium-Range Weather Forecasts ECMWF Reanalysis on global land surface (ERA5-Land), the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement V06 Final (IMERG), the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS), and the African Rainfall Estimation (RFEv2) products. The results suggest that IMERG (R2 = 0.63, slope of linear regression a = 0.96, root mean square error RMSE = 12 mm/day, mean absolute error MAE = 5.5 mm/day) outperforms other GPPs at the daily scale, followed by RFEv2 (R2 = 0.41, a = 0.94, RMSE = 15 mm/day, MAE = 6 mm/day) and ARC2 (R2 = 0.30, a = 0.88, RMSE = 16 mm/day, MAE = 6.7 mm/day). All GPPs, with the exception of the ERA5, overestimate the ‘no rain’ class (0–0.2 mm/day). ARC2, IMERG, PERSIANN, and RFEv2 all underestimate rainfall occurrence in the 0.2–150 mm/day rainfall range, whilst CHIRPS and ERA5 overestimate it. Only CHIRPS and PERSIANN could estimate extreme rainfall (>150 mm/day) satisfactorily. According to the Critical Success Index (CSI) categorical statistical measure, IMERG performs quite well in detecting rain events in the range of 2–100 mm/day, whereas PERSIANN outperforms IMERG for rain events larger than 150 mm/day. Because it performs best at daily scale, only IMERG was evaluated for time scales other than daily. At the yearly and monthly time scales, the performance is good with R2 = 0.97 and 0.87, respectively. At the event time scale, the probability distribution function PDF of rain gauge values and IMERG data show good agreement. However, at an hourly time scale, the correlation between ground-based measurements and IMERG data becomes poor (R2 = 0.20). Overall, the IMERG product can be regarded as the most reliable gridded precipitation source at monthly, daily, and event time scales for hydrological applications in the study area, but the poor agreement at hourly time scale and the inability to detect extreme rainfall >100 mm/day may, nevertheless, restrict its use.

Funder

Académie de Recherche d'Enseignement Supérieur

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3