SynthWakeSAR: A Synthetic SAR Dataset for Deep Learning Classification of Ships at Sea

Author:

Rizaev Igor G.ORCID,Achim AlinORCID

Abstract

The classification of vessel types in SAR imagery is of crucial importance for maritime applications. However, the ability to use real SAR imagery for deep learning classification is limited, due to the general lack of such data and/or the labor-intensive nature of labeling them. Simulating SAR images can overcome these limitations, allowing the generation of an infinite number of datasets. In this contribution, we present a synthetic SAR imagery dataset with ship wakes, which comprises 46,080 images for ten different real vessel models. The variety of simulation parameters includes 16 ship heading directions, 6 ship velocities, 8 wind directions, 2 wind velocities, and 3 incidence angles. In addition, we extensively investigate the classification performance for noise-free, noisy, and denoised ship wake scenes. We utilize the standard AlexNet architecture and employ training from scratch. To achieve the best classification performance, we conduct Bayesian optimization to determine hyperparameters. Results demonstrate that the classifications of vessel types based on their SAR signatures are highly efficient, with maximum accuracies of 96.16%, 92.7%, and 93.59%, when training using noise-free, noisy, and denoised datasets, respectively. Thus, we conclude that the best strategy in practical applications should be to train convolutional neural networks on denoised SAR datasets. The results show that the versatility of the SAR simulator can open up new horizons in the application of machine learning to a variety of SAR platforms.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3