Analysis of the Feasibility of UAS-Based EMI Sensing for Underground Utilities Detection and Mapping

Author:

Hartshorn Caylin A.,Isaacson Sven D.,Barrowes Benjamin E.,Perren Lee J.,Lozano David,Shubitidze FridonORCID

Abstract

This paper investigates the feasibility of using a linear current sensing (LCS) technique integrated on an unmanned aerial system (UAS) for detecting and mapping underground infrastructure rapidly and cost-effectively. The LCS technique is based on data from a wide band of electromagnetic induction frequencies (50 kHz to 2 MHz) using a vector magnetic field gradiometer. This technique takes advantage of a slowly decaying secondary magnetic field in order to achieve greater standoff detection distance (1R2 vs. 1R6 for compact metallic targets during EMI sensing, where R is the distance from a target to the sensor). These secondary magnetic fields are produced by the excite current on long conductors, allowing detection at a distance of 10 meters or more. The system operates between tens of kHz to a few MHz and uses either an active EMI source or existing EM fields to excite this linear current on a long metallic subsurface target. Once excited, these linear currents produce a secondary magnetic field that is detected with an above ground triaxial magnetic field gradiometer. By moving and tracking its geolocation, the system outputs rich datasets sufficient to support high-fidelity forward and inverse EMI models for estimating the depth and orientation of deep underground long linear metallic infrastructure. The system’s hardware and its integration to a UAS system are outlined, along with the formulation of LCS theory, and numerical and experimental data are presented. The results illustrate that the LCS technique offers large standoff detection, is adaptable to UAS, and could be used effectively for detecting deep underground infrastructure such as wires and pipes.

Funder

DoE under ARPA-E REPAIR program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3