Detection of Aircraft Emissions Using Long-Path Differential Optical Absorption Spectroscopy at Hefei Xinqiao International Airport

Author:

Duan JunORCID,Qin Min,Fang Wu,Liao Zhitang,Gui Huaqiao,Shi Zheng,Yang Haining,Meng Fanhao,Shao Dou,Hu Jiaqi,Han Baobin,Xie Pinhua,Liu Wenqing

Abstract

Airport emissions have received increased attention because of their impact on atmospheric chemical processes, the microphysical properties of aerosols, and human health. At present, the assessment methods for airport pollution emission mainly involve the use of the aircraft emission database established by the International Civil Aviation Organization, but the emission behavior of an engine installed on an aircraft may differ from that of an engine operated in a testbed. In this study, we describe the development of a long-path differential optical absorption spectroscopy (LP-DOAS) instrument for measuring aircraft emissions at an airport. From 15 October to 23 October 2019, a measurement campaign using the LP-DOAS instrument was conducted at Hefei Xinqiao International Airport to investigate the regional concentrations of various trace gases in the airport’s northern area and the variation characteristics of the gas concentrations during an aircraft’s taxiing and take-off phases. The measured light path of the LP-DOAS passed through the aircraft taxiway and the take-off runway concurrently. The aircraft’s take-off produced the maximum peak in NO2 average concentrations of approximately 25 ppbV and SO2 average concentrations of approximately 8 ppbV in measured area. Owing to the airport’s open space, the pollution concentrations decreased rapidly, the overall levels of NO2 and SO2 concentrations in the airport area were very low, and the maximum hourly average NO2 and SO2 concentrations during the observation period were better than the Class 1 ambient air quality standards in China. Additionally, we discovered that the NO2 and SO2 emissions from the Boeing 737–800 aircraft monitored in this experiment were weakly and positively related to the age of the aircraft. This measurement established the security, feasibility, fast and non-contact of the developed LP-DOAS instrument for monitoring airport regional concentrations as well as NO2 and SO2 aircraft emissions during routine airport operations without interfering with the normal operation of the airport.

Funder

National Science Foundation of China

Anhui Provincial Key R&D Program, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3