Merging Multisatellite and Gauge Precipitation Based on Geographically Weighted Regression and Long Short-Term Memory Network

Author:

Shen JianmingORCID,Liu Po,Xia Jun,Zhao Yanjun,Dong Yi

Abstract

To generate high-quality spatial precipitation estimates, merging rain gauges with a single-satellite precipitation product (SPP) is a common approach. However, a single SPP cannot capture the spatial pattern of precipitation well, and its resolution is also too low. This study proposed an integrated framework for merging multisatellite and gauge precipitation. The framework integrates the geographically weighted regression (GWR) for improving the spatial resolution of precipitation estimations and the long short-term memory (LSTM) network for improving the precipitation estimation accuracy by exploiting the spatiotemporal correlation pattern between multisatellite precipitation products and rain gauges. Specifically, the integrated framework was applied to the Han River Basin of China for generating daily precipitation estimates from the data of both rain gauges and four SPPs (TRMM_3B42, CMORPH, PERSIANN-CDR, and GPM-IMAGE) during the period of 2007–2018. The results show that the GWR-LSTM framework significantly improves the spatial resolution and accuracy of precipitation estimates (resolution of 0.05°, correlation coefficient of 0.86, and Kling–Gupta efficiency of 0.6) over original SPPs (resolution of 0.25° or 0.1°, correlation coefficient of 0.36–0.54, Kling–Gupta efficiency of 0.30–0.52). Compared with other methods, the correlation coefficient for the whole basin is improved by approximately 4%. Especially in the lower reaches of the Han River, the correlation coefficient is improved by 15%. In addition, this study demonstrates that merging multiple-satellite and gauge precipitation is much better than merging partial products of multiple satellite with gauge observations.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3