Remote Sensing Monitoring of Rice Grain Protein Content Based on a Multidimensional Euclidean Distance Method

Author:

Zhang Jie,Song XiaoyuORCID,Jing Xia,Yang Guijun,Yang ChenghaiORCID,Feng HaikuanORCID,Wang Jiaojiao,Ming Shikang

Abstract

Grain protein content (GPC) is an important indicator of nutritional quality of rice. In this study, nitrogen fertilization experiments were conducted to monitor GPC for high-quality Indica rice varieties Meixiangzhan 2 (V1) and Wufengyou 615 (V2) in 2019 and 2020. Three types of parameters, including photosynthetic sensitive vegetation indices (VIs), canopy leaf area index (LAI), and crop plant nitrogen accumulation (PNA), obtained from UAV hyperspectral images were used to estimate rice GPC. Two-dimensional and three-dimensional GPC indices were constructed by combining any two of the three types of parameters and all three, respectively, based on the Euclidean distance method. The R2 and RMSE of the two-dimensional GPC index model for variety V1 at the tillering stage were 0.81 and 0.40% for modeling and 0.95 and 0.38% for validation, and 0.91 and 0.27% for modeling and 0.83 and 0.36% for validation for variety V2. The three-dimensional GPC index model for variety V1 had R2 and RMSE of 0.86 and 0.34% for modeling and 0.78 and 0.45% for validation, and 0.97 and 0.17% for modeling and 0.96 and 0.17% for validation for variety V2 at the panicle initiation stage. At the heading stage, the R2 and RMSE of the three-dimensional model for variety V1 were 0.92 and 0.26% for modeling and 0.91 and 0.37% for validation, and 0.96 and 0.20% for modeling and 0.99 and 0.15% for validation for variety V2. These results demonstrate that the GPC monitoring models incorporating multiple crop growth parameters based on Euclidean distance can improve GPC estimation accuracy and have the potential for field-scale GPC monitoring.

Funder

National Natural Science Foundation of China

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3