An Iterative Nonlinear Filter Using Variational Bayesian Optimization
Author:
Hu Yumei,Wang Xuezhi,Lan Hua,Wang Zengfu,Moran Bill,Pan Quan
Abstract
We propose an iterative nonlinear estimator based on the technique of variational Bayesian optimization. The posterior distribution of the underlying system state is approximated by a solvable variational distribution approached iteratively using evidence lower bound optimization subject to a minimal weighted Kullback-Leibler divergence, where a penalty factor is considered to adjust the step size of the iteration. Based on linearization, the iterative nonlinear filter is derived in a closed-form. The performance of the proposed algorithm is compared with several nonlinear filters in the literature using simulated target tracking examples.
Funder
China Association for Science and Technology
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献